If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-15x-27=0
a = 3; b = -15; c = -27;
Δ = b2-4ac
Δ = -152-4·3·(-27)
Δ = 549
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{549}=\sqrt{9*61}=\sqrt{9}*\sqrt{61}=3\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{61}}{2*3}=\frac{15-3\sqrt{61}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{61}}{2*3}=\frac{15+3\sqrt{61}}{6} $
| (6y-3)=90 | | x2+2x-255=0 | | 6x-4=x+31 | | 2k+5+9=-(k-3) | | 5x-21=x+27 | | 24y+24=48 | | F(4)=6x+7 | | |2c+5|=1 | | 4-1/2x=5 | | 153=-3x-2(7x-17) | | 3x-4+2x=180 | | 1000x=500 | | 4x=6x(-14) | | 9v-36=-7(v-4) | | A=1/2(3x-2)(4x) | | ((x+1)/4x)=5/6 | | 9v-36=7(v-4) | | 20-3=2(x+1 | | 4x-55=2x-17 | | x2-4x-96=0 | | 58+x=2x | | -60+x=0 | | I15=5x | | 9x3=7x+19 | | (17x+9)+(-3x-5)+(=2x+11)=0 | | (x*x)+4x=13 | | 50+80+65+x=180 | | 63b/7=0 | | 84=13m-m | | 31+(-3x-1)=90 | | 4kk+8=3 | | 43+57+x=180 |